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We consider a lattice polymer model �random walk�, in which the walk is allowed to visit lattice bonds at
most twice. Such a model might have some relevance to describe statistical properties of RNA molecules. In
order to mimic base pairing, we assign an attractive energy term to each doubly visited bond, and a further
contribution to each pair of consecutive doubly visited bonds. The latter term is expected to mimic the stacking
effect, whereas no effect of sequence, that is, of chemical specificity, is taken into account. The phase diagram
is worked out exactly on a Bethe lattice, in a grand-canonical formulation. In the single molecule limit, the
system undergoes two different phase transitions upon decreasing temperature: a �-like collapse from a
swollen “coil” state to a “molten” state, with a low fraction of doubly visited bonds, and subsequently to a
“paired” state, with empty or doubly visited bonds only. The stacking effect drives the latter transition from
second to first order.
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I. INTRODUCTION

Lattice self-avoiding walks, i.e., random walks that are
forbidden to visit lattice sites more than once, have long been
employed for modeling linear polymers in a good solvent
�1�. A short range interaction between nonconsecutive mono-
mers has also been considered in order to represent either
Van der Waals attractive forces between monomers or the
effective result of solvophobic interactions. Such interactions
cause the well-known � transition from a swollen coil at
high temperature to a compact globule at low temperature
�2�. The Bethe approximation �3–5�, i.e., the exact solution
on the Bethe lattice, has been shown to reproduce with rea-
sonable accuracy, and with negligible computational effort,
the phase behavior of such basic model �� model� and also
of slightly more complicated polymer models �6–10�.

Several variations of the � model have been proposed in
order to describe different physical phenomena. In particular,
it is possible to relax the self-avoidance constraint, allowing
the walk to visit lattice bonds at most twice. If the polymer
chain is assigned an orientation, and lattice bonds are al-
lowed to be doubly visited only by opposite chain segments,
the model is denoted as 2-tolerant trail �11,12�. This model
may be useful to investigate configurational statistics of
RNA molecules, whose importance in molecular biology is
being more and more recognized �13–16�. Similar to DNA, a
RNA molecule is a long polymer chain composed of four
different monomers �bases�, adenine, cytosine, guanine, and
uracil, which are pairwise complementary �i.e., adenine-
uracil and cytosine-guanine pairings are energetically fa-
vored by the formation of the hydrogen bonds �17��. At a
coarse-grained level, one can neglect the differences among
bases and assign an attractive �contact� energy for each base
pairing, that is, for each doubly visited bond.

Quite recently, Baiesi, Orlandini, and Stella �11� have in-
vestigated the previously described model, performing accu-
rate Monte Carlo simulations on the face-centered-cubic
�fcc� lattice, fully taking into account the excluded volume
effect, and showing the existence of a continuous phase tran-

sition �similar to the � collapse� from a high temperature
state in which the RNA is almost completely unpaired to a
low temperature state with a significant fraction of paired
bases �the so-called molten phase�.

In this work, we first verify that the Bethe approximation,
which is able to take into account excluded volume at a local
level �9�, predicts a �-like transition as well. Moreover, we
consider an extended model with a more general energy
function: We assign a specific energy contribution to con-
secutive paired bases, without intermediate branching, in or-
der to mimic the so-called stacking effect �17–19�. Indeed,
the stacking effect, mostly related to hydrophobicity �18�, is
claimed to be energetically more relevant than base pairing
�17�, and, however, has great importance for algorithms at-
tempting to predict the secondary structure of given RNA
sequences �20�. In the statistical physics literature, models
with ordinary pairing energy only �11,12,21–24�, or with
stacking energy only �25�, or both �26� have been consid-
ered, but the relative importance of the stacking effect with
respect to base pairing has been scarcely investigated �27�.
On the contrary, we specifically address the issue of stacking,
assigning different relevance to one of the two interactions,
by means of an adjustable parameter. We observe that our
model predicts, in the low temperature region, a fully base-
paired phase. Such phase, which does not at all correspond to
a unique secondary structure, might describe—with some
cautions—an average “native” state. The phase transition to
the molten phase �“denaturation”� turns out to be continuous,
for the ordinary pairing energy model, but, upon adding even
a small stacking energy, it turns out to change into first order.

The paper is organized as follows. In Sec. II, we introduce
the model in some more detail and give an overview of the
Bethe lattice calculation. In Sec. III we work out the phase
behavior of the model, with particular attention to the single-
molecule limit, and in Sec. IV we discuss the results, adding
some concluding remarks. Appendixes A and B are devoted,
respectively, to a derivation of the equilibrium free energy
and of the recursion equations for the Bethe lattice, while in
Appendix C we report the analytical calculation of the �-like
transition temperature.
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II. THE MODEL AND THE BETHE LATTICE
CALCULATION

As previously mentioned, our polymer model is a self-
avoiding walk, which is exceptionally allowed to visit each
lattice bond �at most� twice, but is not allowed to self-
intersect. We can imagine roughly the following picture.
Each segment of the walk represents a monomer �base�,
whereas empty lattice bonds represent the solvent. Doubly
visited bonds �i.e., bonds occupied by two segments� repre-
sent paired bases, yielding an attractive energy −��−��, with
����0. Moreover, every pair of consecutive doubly vis-
ited bonds yields an additional attractive contribution −�,
providing a rough description of the stacking effect. It turns
out that � is the maximum pairing energy, obtained by con-
secutive base-pairing, and will be taken as the energy unit.
According to the grand-canonical formulation, a chemical
potential � is associated to each monomer, while the solvent
chemical potential is conventionally assumed to be zero.

Let us spend a few words to notify that the coarse-grained
model introduced above includes some degree of inconsis-
tency. In particular, to be more precise, segments of the walk
ought to represent stretches of the order of the persistence
length of the polymer chain. Unfortunately, the persistence
length turns out to be much different for single-or double-
stranded RNA stretches �being much larger in the latter
case�, but we nonetheless describe both cases within a single
lattice bond. We expect that such inconsistency should not
alter the qualitative phase behavior of the model, since this is
what happens for similar models of DNA, as it has been also
noted in Ref. �11�.

A configuration of the system can be defined by specify-
ing the number of segments on each lattice bond. Therefore
we define a configuration variable ni=0,1 ,2 �occupation
number� for the ith lattice bond. Of course, such configura-
tion variables are not independent, but have to satisfy some
constraints. In particular, on each set of bonds of a given site,
we impose the following conditions: �i� the total number of
segments must be even; �ii� there cannot be more than two
unpaired segments; and �iii� if only two segments are
present, they must be unpaired. Table I exemplifies the con-
straints in more detail for the simple case with coordination
number equal to 4, but generalizing to any coordination
number is straightforward.

Constraint �i� is a simple connectivity constraint, stating
that the chain does not terminate after a finite number of
segments. Constraints �ii� and �iii� state that, if two unpaired
segments come to a given site from different lattice bonds,
they either pair each other �so that at least another bond is
doubly occupied� or they are consecutive along the chain �all
other bonds are empty�. More precisely, constraint �ii� im-
plies that unpaired chain stretches behave like self-avoiding
walks, which cannot visit a lattice site more than once, un-
less they get paired. Constraint �iii� deserves some more dis-
cussion. A configuration with only two paired segments
could represent a “terminal loop,” in which the chain bends
onto itself to form a hairpin. In principle, such “zero-length
loops” should be allowed by a basic 2-tolerant polymer
model. Therefore, constraint �iii�, which forbids them, can be
considered either as a further detail, which defines a slightly

different model, or as an approximation to the original one.
Such an approximation, which is conceptually independent
of the subsequent approximate �Bethe� statistical treatment,
has been first taken for technical reasons, in order to simplify
the analytical calculations. We shall shortly discuss this tech-
nical issue in the following. By now, we only observe that
there is actually a physical argument, which suggests that the
modified model might be even a bit closer to the real system.
In fact, for energetic reasons, terminal loops must have a
minimum length of four bases, and experiments show that, in
real RNA, typical hairpin loops are just of that kind �tetral-
oops� �13�. Therefore a hairpin loop should have a finite,
though small, entropy, which cannot be taken into account by
a zero-length loop in the coarse-grained model.

Assuming a coordination number k+1, the Hamiltonian
can formally be written as

H = �
�i0,. . .,ik�

Hni0
,. . .,nik

+ �
i

hni
, �1�

where the former sum runs over all sets of bonds �i0 , . . . , ik�
of all lattice sites, and the latter over all bonds i. Single-bond
energy terms hn take into account pairing energies and
chemical potential contributions, and can be defined as fol-
lows:

h0 = 0, �2�

h1 = – � , �3�

h2 = – �� – �� – 2� . �4�

Many-bond terms Hn0,. . .,nk
take into account the constraints,

assigning infinite energy penalties to forbidden configura-
tions, and the stacking energy contributions. A definition of
these terms would be quite cumbersome, from an analytical
point of view, so that we can assume they are defined by a
table like Table I.

Let us briefly return to discuss constraint �iii�, which, as
previously mentioned, disallows zero-length hairpin loops,
i.e., configurations with only two paired segments on the set
of bonds of a given site. It turns out that, if we allowed such
a configuration, local constraints of the form Hn0,. . .,nk

would
also allow, for instance, configurations with two paired seg-
ments disconnected from everything else, or even paired
stretches of any length. In this way, we would not study an
infinitely long polymer, but a mixture of polymers of differ-
ent lengths, and this would be a completely different system.
In order to avoid constraint �iii�, we would have to exclude
the aforementioned undesired configurations, and we would
also need a more complicated treatment. This will be the
subject of a future work.

Let us now introduce the Bethe approximation. Basically,
it consists in replacing the single walk on the regular lattice
by a gas of walks, with the same self-avoidance constraints
and interactions, on a Bethe lattice, having the same coordi-
nation number as the regular lattice one. In older literature, a
Bethe lattice was simply understood to be the inner region of
an infinite Cayley tree �28�. Nevertheless, it has been subse-
quently shown that the thermodynamic behavior of a Cayley
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tree is strongly affected by the presence of a boundary, and
the exact solution for this system does not agree with the
Bethe approximation �29�. More recently, it has been recog-
nized that the Bethe lattice has to be a homogeneous,
boundary-less structure �so that the thermodynamic proper-
ties of the system can be worked out by suitable self-
consistence equations �5��, which also allows for the pres-
ence of macroscopically large loops �30�. The Bethe lattice is
thus better defined as an ensemble of random graphs with
fixed coordination number �31�, which are locally treelike �in
the sense that loop length is O�ln N�, where N is the number
of nodes�, and whose thermodynamic behavior is governed
by the variational Bethe free energy �4�. The free energy
minima can still be determined by solving a suitable recur-
sion relation for the so-called partial partition functions
�5,32�. We shall address this issue in Appendix A. Hereafter,
we just give an intuitive derivation, based on the treelike
nature of the system. Let us consider, for instance, the Bethe

lattice depicted in Fig. 1, and the right part of the system,
starting with the bond denoted by 0. Since loops connecting
the two parts are �with high probability� infinitely long in the
thermodynamic limit, we can imagine that the two parts are
actually disconnected branches and that we can thus define a
partial Hamiltonian, obtained by Eq. �1� restricting the sum
to bond variables in one branch. The corresponding partial
partition function Wn0

can be computed by summing the
Boltzmann weights of the partial Hamiltonian over the con-
figurations of the branch except the 0 bond. Actually, it is
convenient to work with a normalized partial partition func-
tion wn0

�Wn0
, such that

�
n0=0

2

wn0
= 1. �5�

The normalized partial partition function wn0
represents, as a

function of n0, the probability distribution of the configura-

TABLE I. Configurations of a set of bonds of a given lattice site �left column�; occupation numbers ni for each bond i=0, . . . ,k
�midcolumns�; total number of segments Nn0,. . .,nk

��i=0
k ni and corresponding energy term Hn0,. . .,nk

�right columns�. Notice that graphical
representations are limited to four bonds; only configurations with an even number of segments are reported because odd numbers are
forbidden �the corresponding energy terms are ��; and energy terms are invariant under bond permutations.
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tion variable “in the absence of the other branch.” Let us now
observe that, in the thermodynamic limit, and in the hypoth-
esis of a homogeneous system, the subbranches attached to
the 0 bond should be equivalent to the main one, so that one
can write the recursion equation

wn0
= q−1e−hn0 �

n1=0

2

. . . �
nk=0

2

e−Hn0,n1,. . .,nk	
i=1

k

wni
. �6�

The sum runs over configuration variables of bonds attached
to the 0 bond �n1 and n2, in our example�, the energy terms
hn0

and Hn0,n1,. . .,nk
are assumed to be normalized to tempera-

ture, and q is a normalization constant, imposed by Eq. �5�. A
more explicit form of the recursion equation is given in Ap-
pendix B, where the specific energy terms Hn0,n1,. . .,nk

of our
model are taken into account. The recursion equation can be
solved numerically by a simple iterative algorithm. All equi-
librium properties of the system can be derived from the
knowledge of the partial partition function.

First of all, we can compute the probability distribution pn
of a bond configuration variable n, by considering the opera-
tion of attaching two branches to the given bond. We obtain

pn = z−1ehnwn
2, �7�

where

z = �
n=0

2

ehnwn
2 �8�

provides normalization. The average number of segments per
bond, which we shall briefly refer to as density in the follow-
ing, can be evaluated as

� = �
n=0

2

npn = p1 + 2p2. �9�

The density � is the main order parameter for our system. As
a secondary order parameter, we evaluate the fraction of
paired segments

	 = 2p2/� . �10�

The grand-canonical free energy �grand-potential� per bond

 can be determined as


 = −
2 ln q − �k − 1�ln z

k + 1
, �11�

where q is the normalization constant of the recursion equa-
tion �6� and z is given by Eq. �8�. The derivation of this
expression requires some manipulations and is reported in
Appendix A. From the knowledge of the grand-potential one
can derive all other thermodynamic properties and determine
thermodynamic stability for each phase.

III. THE PHASE DIAGRAM AND THE SINGLE-
MOLECULE LIMIT

In the framework of a grand-canonical formulation, the
phase diagram can be described as a function of temperature
and chemical potential. For a polymer, the latter controls the
average chain length. For example, in the simple � model,
there exists a phase transition line �=��T� at which �for
increasing � values� the average length either diverges con-
tinuously �for temperatures higher than some temperature ��
or jumps discontinuously to infinity �for temperatures lower
than �� �1�. The transition line is identified as the thermody-
namic limit of a single chain, so that we denote it as the
“single-molecule” limit. Alternatively, the system can be de-
scribed in terms of a segment density �, and one obtains �
=0 for ����T� and ��0 for ����T�. The transition is
second order for T�� and first order for T��. In the limit
�→��T�+, the properties of the dense phase approach those
of a single chain, and, in particular, the segment density � is
a measure of the chain compactness. Therefore the tricritical
point �� ,�����, known as � point, represents a coil-globule
collapse.

We present grand-canonical phase diagrams of our Bethe
lattice model for the case of zero stacking effect ��=0� and
for a case of nonzero stacking effect �� /�=0.2�, which show
qualitatively different behaviors. Let us recall that � /� quan-
tifies the ratio between the neat stacking energy � and the
total effect of pairing and stacking �the simple pairing energy
is �−��. We shall shortly denote � /� as stacking ratio in the
following. We set k=11 �coordination number=12�, expect-
ing to approximate the fcc lattice. Let us consider the zero
stacking case first. The phase diagram is displayed in Fig. 2
�upper graph�, where the temperature variable is 1 /� and the
chemical potential variable is � /�. We find three different
phases: a zero density phase �O�, an ordinary dense phase �I�,
and a fully paired dense phase �II�. The zero density phase is
characterized by �=0. Since only a vanishing fraction of
bonds is occupied in this phase, also the grand-potential per
bond 
 vanishes, and, for the same reason, the fraction of
paired segments 	 is undefined. The I phase is characterized
by 0���2 and 0�	�1, i.e., it is a dense phase which
possesses a finite fraction of paired segments. We can
roughly compare it to the dense phase of an ordinary �
model. Finally, the II phase is characterized by 0���2 and
	=1, i.e., it is a dense phase in which every segment is
paired.

FIG. 1. Sketch of a Bethe lattice with k=2.
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The transition line between the O and I phases turns out to
be partially first and partially second order. The two regimes
are separated by a tricritical point. As explained in Appendix
C, it is possible to determine analytically the equation of the
second order line,

� = − ln k , �12�

and the location of the tricritical point

� = ln
k2

k + �k − 1�e−� . �13�

It has been pointed out that, for this kind of �2-tolerant�
polymer models, the tricritical point exhibits peculiar values
of the critical exponents that are different from those of the
ordinary self-avoiding walk with attractive interaction, and
suggest a linear-to-branched polymer transition �33�. Evi-
dences of such a behavior will be observed also in our
model. Nevertheless, since this point still corresponds to a
continuous collapse and, since exponent differences cannot
be detected at a Bethe approximation level, we shall all the
same speak of a � point in the following.

In the dense region ���0� a second order transition line
separates the I and II phases. This line joins to the transition
line with the O phase at a critical end point. The latter cor-
responds to another continuous conformational transition for
the single molecule. The behavior is different, in the pres-
ence of the stacking effect, as shown in Fig. 2 �lower graph�.
The same three phases O, I, and II discussed above are
present, and also the high temperature region of the phase
diagram is qualitatively similar, although we can observe a
lower � temperature, in agreement with Eq. �13�. On the
contrary, the I-II transition line turns out to be partially sec-
ond and partially first order, giving rise to a tricritical point
in the dense region. In this way, the critical end point disap-
pears, and is replaced by a triple point, which corresponds to
a discontinuous transition in the single-molecule limit.

Let us now investigate this limit in more detail. First of
all, we consider the fraction of paired segments 	, computed
for � tending to the transition line from above, as a function
of temperature. The results are reported in Fig. 3 for three
different values of the stacking ratio � /�=0,0.2,1. For all
cases, we can see that 	 is rigorously zero above the �
temperature. In this regime, which we can denote as coil
state, the polymer behaves like an ordinary self-avoiding
walk without self-interaction. Upon decreasing temperature
below the � point, the fraction of paired segments begins to
increase, revealing formation of contacts. We can identify
this regime as the molten state. As previously mentioned, the
� temperature decreases, upon increasing the stacking en-
ergy. Upon further decreasing temperature, 	 reaches the
saturation value 	=1. In this regime, which we simply de-
note as paired state since all segments are paired, we can
imagine our system as a branched double chain. In this
sense, we can identify this phase as a “native” RNA-like
state, although it does not at all correspond to a single con-
figuration, as it will become clearer later. As previously men-
tioned, the molten-paired transition is continuous in the zero
stacking case, but becomes first order in the nonzero stacking
cases. More precisely, we observe that the stacking energy

FIG. 2. Chemical potential-temperature �� /� vs 1/�� phase dia-
gram for the zero stacking case ��=0, upper graph� and a nonzero
stacking case �� /�=0.2, lower graph�. Solid lines denote first order
transitions; dashed lines denote second order transitions. The ordi-
nary dense phase is denoted by I, whereas the fully paired dense
phase is denoted by II. The zero density phase is left blank. The
insets display the regions enclosed in the small rectangles.

FIG. 3. Fraction of paired segments as a function of temperature
�	 vs 1/�� in the single-molecule limit, for different values of the
stacking ratio � /�. Dashed lines denote discontinuities; a thin solid
line connects transition values. The inset displays the region en-
closed in the small rectangle.
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needed to change the order of the transition is very small but
finite, as suggested in Fig. 3 by the thin line connecting the
transition values of 	.

We also investigate the temperature dependence of the
entropy per segment, which can be computed as follows. The
grand-potential per bond can be written as


 = f − �� , �14�

where f is the Helmholtz free energy per bond. As previously
mentioned, 
 vanishes at the O phase boundary, so that in
this case � coincides with the Helmholtz free energy per
segment

� = f/� . �15�

Remembering that our energies are normalized to tempera-
ture, the equation of the O phase boundary can be written as

�/� = ��1/�� , �16�

where the function � is known numerically with high preci-
sion. The entropy per segment �in natural units� can thus be
easily determined as

s/� = − ���1/�� , �17�

where �� denotes the first derivative of �. We report the
results in Fig. 4 for the usual values of the stacking ratio
� /�=0,0.2,1. For all cases, in the coil state, the entropy per
segment is rigorously independent of temperature and equal
to ln k, as it can be easily derived by Eqs. �12�, �16�, and
�17�. This value characterizes an ordinary self-avoiding walk
on the Bethe lattice �9�. In the molten state, the entropy starts
decreasing �as temperature decreases�, more and more rap-
idly, upon increasing the stacking effect. Finally, in the
paired state, the entropy is almost constant and its value turns
out to be slightly larger than �ln k� /2, which would charac-
terize a self-avoiding double chain. The excess entropy with
respect to this value, which is due to branching, tends to zero

as temperature goes to zero, and decreases upon increasing
the stacking effect.

According to the results reported so far, the low tempera-
ture phase might appear as almost completely quenched. The
following analysis of the average length of double chain
stretches �which we shall shortly refer to as stacking length
in the following� demonstrates that this is not the case. Let 
denote the probability that, given a lattice bond occupied by
two paired segments, just one neighbor bond �in a given
direction� is occupied by two paired segments as well. We
can call  the stacking probability. Due to the Markovian
nature of the Bethe lattice, the probability of having a double
chain stretch of length l in the given direction is l−1�1−�.
The average stacking length is therefore

� = �
l=1

�

ll−1�1 − � =
1

1 − 
. �18�

Considering the recursion equation �B3�, we can derive the
stacking probability as the ratio between the weight of the

stacked configuration �k

1 �e�w2w0
k−1 and the total weight of

the configurations compatible with the two paired segments
�coinciding with the left-hand side, at a fixed point of the
recursion equations�. Remembering also the expression �4�
for h2, we easily obtain

 = q−1ke2�+�w0
k−1, �19�

where of course q and w0 are available from the numerical
solution. It is also useful to derive an explicit expression for
 at the second order O-I phase boundary, in order to avoid
taking limits numerically. Performing basically the same cal-
culation with Eq. �C2�, taking the limit x ,y→0, and making
use of Eq. �C6�, we obtain:

 =
k

k + �k − 1�e−� . �20�

Moreover, comparing this equation with Eq. �13�, we obtain,
at the � point, the following simple relation:

 = e�/k . �21�

The results are reported in Fig. 5, again for � /�=0,0.2,1.
The most interesting features appear in the coil and paired
states. In particular, we can observe that the stacking length
is constant with respect to temperature if �=0, i.e., in the
absence of the stacking effect. On the contrary, even a very
small stacking energy makes the stacking length increase
upon decreasing temperature. Since the length scale is loga-
rithmic and the temperature scale is “inverse,” straight lines
indicate that � is exponential in � in these phases. As a
consequence, in the presence of the stacking effect, the
stacking length diverges as temperature goes to zero, so that
the ground state of the model can be thought of as a unique
double chain �hairpin�. Let us also notice that, in the coil
state, the stacking length does not vanish at any finite tem-
perature value, unlike the fraction of paired segments. These
results do not disagree, meaning that, if a �rare� contact is
formed, it has nevertheless a probability of not being iso-
lated.

FIG. 4. Entropy per segment as a function of temperature �s /�
vs 1/�� in the single-molecule limit, for different values of the
stacking ratio � /�. Dashed lines denote discontinuities; thin solid
lines connect transition values. The inset displays the region en-
closed in the small rectangle. A dash-dotted line indicates the en-
tropy value �ln k� /2.
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We have already described the overall behavior of the
phase transitions in the single-molecule limit as a function of
the stacking ratio. As this parameter increases, the � tem-
perature decreases, whereas the molten-paired transition tem-
perature increases, and the transition changes from second to
first order. For the sake of completeness, we report in Fig. 6
the transition temperatures as a function of the stacking ratio.
The � transition line is given analytically by Eq. �13�,
whereas the molten-paired transition has been determined
numerically. In the latter transition, we recover the continu-
ous regime at very low stacking values and the discontinuous
regime at higher stacking values. Quantitatively, the bound-
ary between the two regimes is found to occur at � /�

0.0210.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated a 2-tolerant polymer
model on the Bethe lattice, with both contact and stacking
interactions. The model is expected to mimic some qualita-
tive features of conformational transitions of RNA mol-
ecules. The most striking results are the presence of a low
temperature transition to a fully paired phase and the effect
of stacking, which turns out to drive such transition from
second to first order. We have already questioned, throughout
the paper, whether these results have some relevance to the
denaturation transition of real RNA. The most important
warning concerns the fact that we completely neglect chemi-
cal heterogeneities, which are indeed present in RNA. As a
consequence, we observe that the fully paired state does not
correspond to a well-defined secondary structure, but indeed
to a variety of structures. On the contrary, several investiga-
tions proposed in the literature take into account randomly
distributed heterogeneous sequences �21–24,27�. Even in this
case, the low temperature glasslike phase does not corre-
spond to a fixed structure, but the general claim is that it
could describe average RNA properties. On this kind of
model, the only work we are aware of, which performs a
systematic investigation as a function of the strength of the
stacking interaction, is one by Burghardt and Hartmann �27�.
In the cited paper, the authors do not find any evidence of a
change in the order of the �temperature-induced� denatur-
ation transition. Nevertheless, in a previous work, Zhou and
Zhang �34� had observed that an increasing stacking energy
could change the order of a force-induced denaturation. This
result has been actually criticized by Müller �26�, who ar-
gued that the apparent first order transition was rather to be
interpreted as a sharp crossover. It is important to notice,
however, that all the cited investigations neglect the effect of
excluded volume. On the contrary, the Bethe lattice approxi-
mation is partially able to account for excluded volume by
imposing local self-avoidance constraints. This may be in-
deed a reason for our qualitatively different results. In order
to investigate this issue in more detail, it would be interesting
to extend the Bethe lattice analysis to the case of a random
heterogeneous sequence, making use of the recently pro-
posed cavity method �31� along the lines traced by Mon-
tanari, Müller, and Mezard, for the self-avoiding heteropoly-
mer �35,36�.

Let us also compare our results with the Monte Carlo
simulations by Baiesi, Orlandini, and Stella �11�. In the cited
work, the authors investigate a 2-tolerant trail with contact
energy only, on the fcc lattice, fully taking into account ex-
cluded volume. As the polymer is assigned an orientation
�whence the term “trail”�, only antiparallel contacts are al-
lowed. Let us notice, by the way, that in our treatment we
have not introduced orientation explicitly. Nevertheless, it is
possible to show that the latter, together with the constraint
on antiparallel contacts, are equivalent to a simple renormal-
ization of the partial partition functions, with no effect on
observable quantities. Of course, we cannot expect that any
result concerning critical exponents could be reproduced in
the framework of our mean-field like approach. Neverthe-
less, it is noticeable that, for k=11 �fcc lattice� and �=0
�contact energy only�, we predict a � temperature ��

FIG. 5. Average stacking length as a function of temperature ��
vs 1/�� in the single-molecule limit, for different values of the
stacking ratio � /�. Dashed lines denote discontinuities; thin solid
lines connect transition values; a dash-dotted line, determined by
Eqs. �18� and �21�, connects �-point values.

FIG. 6. Transition temperatures as a function of the stacking
ratio �1/� vs � /�� in the single-molecule limit. Solid lines denote
first order transitions; dashed lines denote second order transitions.
The inset displays the region enclosed in the small rectangle.
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1.7513� not so far from the Monte Carlo result ��
1.9�.
Apart from this result, the fact itself that we observe a �-like
transition may raise some interest. Indeed, an important re-
sult of Ref. �11� is that, if pseudoknots �i.e., tertiary RNA
structure� are forbidden, then the �-like transition is replaced
by a smooth crossover. We wonder how the Bethe lattice
approach can reproduce �at least qualitatively� the situation
with pseudoknots, since the model is embedded on a treelike
structure. Our tentative explanation is based on the previ-
ously mentioned definition of the Bethe lattice in terms of
random graphs �31�, rather than the more usual and quick
definition �“the infinite interior of the infinite Cayley
tree”�5��. In the former picture, pseudoknots could be real-
ized via large loops present in the graphs, although in the
current treatment we do not have any control on them. Let us
finally notice that, conversely, just the presence of only large
loops in the Bethe lattice might create some artifact in the
description of RNA statistics, especially with a constraint
which disallows zero-length hairpin turns, as discussed in
Sec. II. We find these issues worth a deeper investigation,
which we would like to devote a future work to.

APPENDIX A: BETHE FREE ENERGY

In this appendix we first give a derivation of the recursion
equation �6� as a stationarity condition for the variational
Bethe free energy, and then prove the validity of the expres-
sion �11� for the equilibrium free energy.

Let us consider a Bethe lattice with c coordination num-
ber, and assume that a configuration variable ni is associated
to each lattice bond i. Let us also assume that the Hamil-
tonian of the system is the one given in Eq. �1�, which in-
cludes couplings among the c bonds of each site. Let the
coupling terms be invariant under permutation of the con-
figuration variables. Expecting a homogeneous thermody-
namic state �i.e., that all local probability distributions are
equal�, we write the Bethe free energy per site as

F = �
�ni�

P�ni�
�H�ni�

+ ln P�ni�
� +

c

2�
n

pn�hn − ln pn� , �A1�

where �ni� stands for n1 , . . . ,nc, while pn and P�ni�
denote,

respectively, the single-variable and the c-variable probabil-
ity distributions. Accordingly, �n and ��ni�

denote the sums
over possible values of the configuration variables. Let us
notice that, as far as the entropic part is concerned, the latter
term of the Bethe free energy can be thought of as a correc-
tion over the former term, such that the mean field free en-
ergy is recovered, when the joint probability distribution fac-
torizes. Equilibrium probability distributions can be
determined as minima of the Bethe free energy, satisfying
suitable normalization and compatibility constraints. By
“compatibility,” we mean that marginalizations of the joint
probability distribution must give the single-variable distri-
bution, according to the relations

pni
= �

�nj�j�i

P�nj�
, i = 1, . . . ,c , �A2�

where the sum runs over possible values of the configuration
variables n1 , . . . ,nc, except ni. We thus have a constrained

optimization problem, for which, in the framework of the
Lagrange multiplier method, we can solve analytically sta-
tionarization with respect to probability distributions. Doing
so, the latter can be written as a function of suitable variables
z, Z, and wn, which correspond to Lagrange multipliers, and
are to be determined in order to satisfy the constraints. We
obtain

pn = z−1ehnwn
2, �A3�

P�ni�
= Z−1e−H�ni�	

i=1

c

wni
. �A4�

Let us notice that wn plays the role of the �normalized� par-
tial partition function introduced in the text, whereas the two
constants z and Z, associated to the normalization con-
straints, are easily determined as a function of wn. Moreover,
imposing the compatibility constraints �A2�, one obtains the
following recursion equation:

wni
= q−1e−hni �

�nj�j�i

e−H�nj� 	
j � i
j=1

c

wnj
, �A5�

where

q = Z/z . �A6�

It is possible to show that, because of a slight redundance of
the constraints, one can choose the constant q at each itera-
tion in an arbitrary way, for instance, by imposing the nor-
malization condition �nwn=1, without affecting “observ-
able” quantities. Let us also notice that the c compatibility
conditions �A2� would require in principle c sets of
“Lagrange multipliers” wn

�i�, for i=1, . . . ,c. Nevertheless, one
can show that, due to invariance of H�ni�

under permutation,
all the sets must be equal to a single one, which we have just
denoted as wn.

Let us now derive the simple free energy formula �11�
presented in the text. Let us plug the expressions �A3� and
�A4� for the equilibrium probability distributions into the
logarithmic terms of the variational free energy �A1�. By
simple algebra, we obtain

F = − ��
�ni�

P�ni��ln Z +
c

2��n

pn�ln z

− �
i=1

c

�
ni

�pni
− �

�nj�j�i

P�nj��ln wni
. �A7�

Since at equilibrium the normalization and compatibility
constraints are satisfied, the previous expression immediately
simplifies to

F = − ln Z +
c

2
ln z . �A8�

Taking into account that there are c /2 bonds per site, that
c=k+1, and making use of Eq. �A6�, we finally obtain Eq.
�11� for the equilibrium free energy per bond.
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APPENDIX B: RECURSION EQUATIONS

In this appendix we write an explicit form for the recur-
sion equations �6�, introducing the values of the couplings
Hn0,. . .,nk

, determined according to criteria explained in Table
I. Moving the constant q and the single-variable energies hn
to the left-hand sides, and remembering that h0=0, we obtain

qw0 = �
m � 1,2

m=0

k � k

m
�w2

mw0
k−m + �k

2
�e�w2

2w0
k−2

+ �k

2
�w1

2�
m=0

k−2 �k − 2

m
�w2

mw0
k−2−m, �B1�

qeh1w1 = �k

1
�w1�

m=0

k−1 �k − 1

m
�w2

mw0
k−1−m, �B2�

qeh2w2 = �
m=2

k � k

m
�w2

mw0
k−m + �k

1
�e�w2w0

k−1

+ �k

2
�w1

2�
m=0

k−2 �k − 2

m
�w2

mw0
k−2−m. �B3�

Let us give a physical explanation of the various terms
appearing on the right-hand sides. They have to take into
account all the allowed configurations of k bonds sharing one
site with a given bond, whose configuration is fixed �n
=0,1 ,2 for the three equations, respectively�. In the first
equation, the fixed configuration is n=0 �empty bond�. In the
right-hand side, the first two terms refer to configurations
with m=0, . . . ,k bonds occupied by paired segments, and k
−m empty bonds. As explained in the text, the case m=1 is
forbidden, and the case m=2 is treated separately, since it
has to take into account a stacking energy contribution. The
third term deals with the case of two bonds occupied by
unpaired segments, m=0, . . . ,k−2 by paired segments, and
k−2−m empty bonds. In the second equation, the fixed bond
configuration is n=1 �bond occupied by an unpaired seg-
ment�. Therefore, in the right-hand side, there is always one
bond occupied by an unpaired segment, together with m
=0, . . . ,k−1 occupied by paired segments, and k−1−m
empty bonds. In the third equation, the fixed configuration is
n=2 �bond occupied by paired segments�. In the right-hand
side, the first two terms refer to configurations with m
=0, . . . ,k bonds occupied by paired segments, and k−m
empty bonds. As in the first equation, the case m=0 is for-
bidden, and the case m=1 is treated separately, because of
the stacking energy contribution. The third term deals with
two bonds occupied by unpaired segments, m=0, . . . ,k−2 by
paired segments, and k−2−m empty bonds.

The above form of the recursion equations can be further
simplified, making use of the binomial expansion. By simple
algebra, we finally obtain

qw0 = �w0 + w2�k + �k

2
�w1

2�w0 + w2�k−2

− �k

1
�w2w0

k−1 + �k

2
��e� − 1�w2

2w0
k−2, �B4�

qeh1w1 = �k

1
�w1�w0 + w2�k−1, �B5�

qeh2w2 = �w0 + w2�k + �k

2
�w1

2�w0 + w2�k−2

− w0
k + �k

1
��e� − 1�w2w0

k−1. �B6�

APPENDIX C: THETA POINT

Hereafter, we report the derivation of Eq. �13�, i.e., the
analytical expression for the � transition temperature. Equa-
tion �12�, i.e., the second order O-I phase boundary, comes
out as a by-product of this derivation. Let us first define the
ratios x�w1 /w0 and y�w2 /w0, for which we can easily de-
rive two recursive equations from �B4�–�B6�

x = e−h1

�k

1
�x�1 + y�k−1

d
, �C1�

y = e−h2

�1 + y�k + �k

2
�x2�1 + y�k−2 − 1 + �k

1
��e� − 1�y

d
,

�C2�

where

d � �1 + y�k + �k

2
�x2�1 + y�k−2 − �k

1
�y + �k

2
��e� − 1�y2.

�C3�

From Eqs. �C1� and �C3�, assuming that x�0, i.e., that we
are in the I phase, we obtain

�k

2
�x2 = �k

1
�e��1 + y� − �1 + y�2 +

�k

1
�y + �k

2
��e� − 1�y2

�1 + y�k−2 .

�C4�

Moreover, in the y→0 limit, i.e., very close to the boundary
with the O phase, we can write

�k

2
�x2 = �ke� − 1� + �ke� + k − 2�y + O�y2� . �C5�

Since we have observed from the numerics that such
boundary is second order, we have that y→0 should imply
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also x→0. We then argue that the zeroth order term on the
right-hand side of the previous equation must vanish. In this
way we obtain Eq. �12�. Plugging this equation into the pre-
vious one, we obtain

�k

2
�x2 = �k − 1�y + O�y2� , �C6�

whereas, remembering also Eq. �4�, Eq. �C2� becomes

y = e�k�e� + 1� − 1

k2e� y + O�y2� . �C7�

Now, in order to allow the possibility that, along the phase
boundary, there can exist some point in which y is vanish-
ingly small but not zero �i.e., a tricritical point�, we have to
equate the first order coefficients on the two sides of the
previous equation. By simple algebra, we obtain the � point
condition �13�.
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